Incidence and morphology of the accessory head of the flexor pollicis longus muscle (Gantzer’s muscle) in a Turkish population

Feray G. Uyaroglu, MD, Gulgun Kayalioglu, MD, Mete Erturk, MD.

ABSTRACT

Objective: To present the incidence, morphology, and the relationships of the accessory head of the flexor pollicis longus (Gantzer’s) muscle (AHFPL) in a recent Turkish population.

Methods: The study was performed on 52 upper extremities of 26 adult Turkish cadavers in the Department of Anatomy, Ege University Faculty of Medicine, Izmir, Turkey in 2005. In our dissections, the prevalence and anatomical morphology of the AHFPL including muscle shape, origin and insertion point, and its relation to the anterior interosseous nerve (AIN) was examined.

Results: The AHFPL muscle was found in 27 upper extremities (51.9%). It was bilateral in 10 cadavers (74%), and unilateral in 7 cadavers (26%). The muscle shape was spindle in 19 (70.4%), and papillary in 8 (29.6%). The AHFPL originated from the coronoid process of the ulna in 22 upper extremities (81.5%), and the medial epicondyle of the humerus in 5 cases (18.5%). The AIN passed anterior to the AHFPL in one case (3.7%), lateral in 3 (11.1%), posterolateral in 8 (29.6%) and posterior in 15 (55.6%) cases.

Conclusion: The knowledge of the morphology and the topography of the AIN and AHFPL is important for understanding the mechanism of the AIN syndrome. The results of this study show the mechanical compression due to the AHFPL may be a cause of the pronator and AIN syndromes.

Neurosciences 2006; Vol. 11 (3): 171-174
and the hand of the human from other primates.8-11 Kiloh and Nevin (1952) first suggested the role of AHFPL in the AIN syndrome, later confirmed by other studies.7,11-17 This study was performed on a large series of adult Turkish cadavers to present the incidence, morphology and the relationships of the AHFPL to reveal the underlying mechanism for the AIN syndrome, and guide the surgeon in regional surgical approaches.

Methods. This study was performed on 52 upper extremities of 26 adult Turkish cadavers (23 male, 3 female) in the Department of Anatomy, Ege University Faculty of Medicine, Izmir, Turkey in 2005. In our forearm dissections, the presence of AHFPL was investigated (Figure 1). When present, the shape and origin of the AHFPL, its insertion point to the FPL and its relation to the AIN were examined. The length, width of the AHFPL, the length of its tendon, and the distance between the insertion point of AHFPL to the medial margin of FPL and the distal wrist line (DWL) were measured using a stainless steel caliper. Distance between the arising point of the AIN and the interepicondylar line (IEL) were also measured.

Results. The AHFPL muscle was found in 27 of 52 upper extremities (51.9%). It was bilateral in 10 cadavers (74%) and unilateral in 7 cadavers (26%). Its shape was spindle in 19 (70.4%) and papillary in 8 (29.6%) specimens. The AHFPL originated from the coronoid process of the ulna in 22 upper extremities (81.5%) and the medial epicondyle of the humerus in 5 cases (18.5%). The length and width of the AHFPL, its tendon length and the distance between the insertion point of AHFPL to the medial margin of FPL and the DWL are shown in Table 1. In one forearm, the AHFPL had 2 muscle bellies and 2 tendons (3.7%). The AHFPL was innervated by the AIN in all cases (Figure 2). The nerve arose from the medial aspect of the median nerve. The arising point of the AIN was 33.79 mm below the IEL. The AIN crossed anterior to the AHFPL in one case (3.7%). The AIN was located lateral to the AHFPL in 3 (11.1%), posterolateral in 8 (29.6%) and posterior in 15 (55.6%) cases.

Discussion. The presence and morphology of the AHFPL (Gantzer’s muscle) and its relations to the AIN were investigated in former studies. The incidence of the AHFPL was found as 66.7% by Oh et al,18 66.6% by Hemmady et al,19 62.1% by Mahakkanukrauh et al,20 55% by Jones et al21 and Shirali et al,22 52% by Al-Qattan,7 and 45% by Dellon and Mackinnon.23 In our study on a recent Turkish population, the AHFPL was found in 27 of 52 upper extremities (51.9%). Oh et al18 observed AHFPL bilateral in 50% and unilateral in 33% of their cadaveric specimens, whereas Mahakkanukrauh et al20 observed bilateral in 75.3% and unilateral in 24.7% of their specimens. Jones et al21 found the AHFPL bilateral in 58.4% and unilateral in 33.4%. In our study, AHFPL was observed bilateral in 10 cadavers (74%) and unilateral in 7 cadavers (26%).

The AHFPL may originate from the coronoid process of the ulna, the medial epicondyle of the
humerus and the flexor digitorum superficialis muscle. Oh et al18 found its origin as the coronoid process of the ulna in 87.5%, the medial epicondyle of the humerus in 10.4%, and the flexor digitorum superficialis muscle in 2.1% of their cases. Mahakkanukrauh et al20 observed the AHFPL originating from the coronoid process of the ulna in 23.5%, the medial epicondyle of the humerus in 74.5% and the flexor digitorum superficialis muscle in 2% of their specimens. In the study of Hemmady et al19, the origin was the coronoid process of the ulna in 16.6% and the medial epicondyle of the humerus in 55.5% of the cadavers. Jones et al21 observed the flexor digitorum superficialis muscle, and Al-Qattan7 the medial epicondyle of the humerus (85%). The muscle was arising from the coronoid process of the ulna (81.5%), and the medial epicondyle of the humerus (18.5%) in our study.

The shape of the AHFPL was observed as papillary, spindle (fusiform) and band (slender) type in former studies.18,20 Oh et al18 observed papillary type in 62.4%, spindle type in 18.8% and band type in 18.8% of their cadavers. Mahakkanukrauh et al20 observed spindle type in 98% and slender type in 2% of cases. Jones et al21 used a different classification, as slender (42.9%), voluminous (28.6%), triangular (14.3%), and fusiform (14.3%) types. In our study, the shape of the AHFPL was spindle (70.4%) or papillary (29.6%).

The average width of the AHFPL was 7 mm in the study of Oh et al18, 6.7 mm in the study of Mahakkanukrauh et al20, 10-25 mm in the study of Hemmady et al19, and 6.99 mm in our study. The mean length of the muscle belly was found as 50-80 mm by Hemmady et al19, 68 mm by Jones et al21 and 71.25 mm in our study. The tendon length of the AHFPL was measured as 11.7 mm by Jones et al21 and 20.7 mm in our study. The distance between the insertion point of the AHFPL to the FPL muscle and the distal wrist line was measured as 128 mm by Mahakkanukrauh et al20 and 127.35 mm in our study. The average distance between the arising point of the AIN on the median nerve to the IEL was found as 49 mm by Oh et al18. The arising point of the AIN was 33.79 mm below the epicondyle of the humerus (18.5%) in our study. The arising point of the AIN was 33.79 mm below the epicondyle of the humerus (18.5%) in our study. The arising point of the AIN was 33.79 mm below the epicondyle of the humerus (18.5%) in our study.

The most common course of the AIN was anterior to the AHFPL.22 The topographical relationship of the AIN to the AHFPL was classified as 3 different types by Oh et al.18 The nerve crossed the muscular part of the AHFPL in Type A (56.3%), the tendinous part of the muscle in Type B (10.4%), and it coursed lateral to the AHFPL in Type C (33.3%). Mahakkanukrauh et al20 classified the course of the AIN in 4 groups. The AIN passed anterior to the AHFPL in Type 1 (13.4%), lateral to the AHFPL in Type 2 (65.8%), posterior to the AHFPL in Type 3 (8.1%) and the AIN passed both lateral and posterior to the AHFPL in Type 4 (12.8%). Using the same classification, we observed the AIN crossing anterior to the AHFPL in one case (3.7%), lateral in 3 (11.1%), posterolateral in 8 (29.6%) and posterior in 15 (55.6%) cases.

It was indicated that the mechanical compression due to the AHFPL may cause pronator and AIN syndromes.11,19 Tabib et al15 reported a case of incomplete AIN syndrome due to mechanical compression by the AHFPL. Degreef and De Smet24 stated a case of an older female patient with paralysis of the AIN caused by an accessory muscle slip of the FPL muscle. Narayana et al25 found a case of coexistence of the Gantzer’s muscle, Martin-Gruber anastomosis and the nerve of Henle in the forearm of the male cadaver. The AIN syndrome is characterized by paralysis of the FPL muscle, the flexor digitorum profundus muscle to the index and middle fingers, and the pronator quadratus muscle. The nerve compression is frequently caused by the pronator teres muscle, or the fibrous arcade of the flexor digitorum superficialis muscle.26 Bilecenoglu et al27 also report AHFPL as an important factor compressing the median nerve.

The morphology and the topographical classification of the relationship between the AIN and the accessory head of FPL muscle is considered to be helpful in understanding the mechanism of AIN syndrome.18 There are some differences between our results and the findings of previous studies such as incidence and origin site of the AHFPL and the course of the AIN. Probably, these differences occur due to the differences of the populations investigated, and also to the number of specimens studied. This study presents topographic features of the AHFPL and the accompanying AIN to be a guide for the surgeon in approaches to the region.

References

Gantzer’s muscle ... Uyaroglu et al

