Congenital absence of the radius, scaphoid, trapezium, thumb and hypoplasia of the lunate

Ayfer Mavi, PhD, Bilal Cagman, MD, Ayhan Ozkur, MD, Metin Bayram, MD, Erdem Gumusburun, PhD

ABSTRACT

The congenital absence of the right radius, scaphoid, trapezium, thumb and hypoplasia of the lunate are described in a 9-year-old boy. He had full extension of his elbow, while flexion motion was limited to 90 degrees. His hand was radially deviated. The thumb was absent. The index and middle fingers were united and immobile. The ring finger had movement only at the metacarpophalangeal joint, while the little finger had full motion. Complete blood count fell within normal ranges. He had no other malformations or mental retardation. No hereditary family history was found and there was no consanguineous marriage. This case is different from cases mentioned in the literature due to lunate hypoplasia and the anomalies of the index, middle and ring fingers.

Keywords: Radial longitudinal deficiency, congenital deformity, hypoplasia of lunate.
buds. During the 6th week, the mesenchymal models of the bones in the limbs undergo chondrification to form hyaline cartilage models; therefore, the teratologic factor must affect the limb bud during the first 5 weeks of fetal life.3

Case Report. The boy was admitted to the Department of Orthopedic and Traumatology, Gaziantep Government Hospital, Turkey, as his right hand and forearm were shorter than the left. On examination he had shorter right forearm and bowed radially with a prominent knob at its lower end but his arm was not shorter than the other side. He had full extension of his elbow, while flexion motion was limited to 90°. His hand which radially deviated. The thumb was absent. The index and 3rd finger was united and immobile. The 4th (ring) finger had movement only at the metacarpophalangeal joint, while the little finger had full motion (Figure 1).

Ossification of the carpal (wrist) bones began during the first year after birth. In a nine-year-old healthy boy, he had complete ossified carpal bones except pisiform bone,6 (Figure 2) while on the right forearm and hand radiography of our patient, radius, scaphoid, and trapezium were missing and lunate was hypoplastic. The distal humeral epiphysis was early fused. Humero-ulnar joint was normal. The distal ulnar epiphysis and processus styloideus were

Figure 1 - The morphologic appearance of his right upper extremity. His elbow had full extension while flexion motion was limited to 90 degrees. His hand was radially deviated. The thumb was absent. The index and 3rd finger was united and immobile. The 4th finger had movement only at the metacarpophalangeal joint, while the little finger had full motion.

Figure 2 - Ossification of the carpal (wrist) bones begins during the first year after birth. The radiograph appearance of carpal bones in a 9-year-old healthy boy, he had complete ossified carpal bones except pisiform bone.

Figure 3 - The radiograph appearance of his right forearm and hand. His radius, scaphoid and trapezium were missing and his lunate was hypoplastic. The distal humeral epiphysis was early fused. Humero-ulnar joint was normal. The distal ulnar epiphysis and processus styloideus were displastic. The radiographic appearance of the metacarpophalangeal and interphalangeal joints were normal.

202 Neurosciences 2002; Vol. 7 (3)
The radiographic appearance of the metacarpophalangeal and interphalangeal joints were normal ([Figure 3]). His complete blood count fell within normal ranges. He had no another malformations or mental retardation. No hereditary family history was found and there was no consanguineous marriage.

Discussion. In congenital deficiencies of the radius, it may be absent totally or partially. In complete absence of radius, the bones of the radial ray the scaphoid, trapezium, first metacarpal and phalanges of the thumb are frequently absent.1,2 O’Rahilly7 surveyed the literature for radial deficiency and found that the scaphoid was absent in 81% (65 of 80 cases) and the trapezium in 84% (62 of 73 cases). Skerik and Flatt11 studied the anatomy of 38 cases of deficiency of the radius and found that the scaphoid was absent in 80% (17 of 21 cases) and the trapezium was absent in 66% (14 of 21 cases). Lamb2 examined 68 patients with radial club hand; scaphoid was absent in 98% and the trapezium in 100%. Silverman3 expressed in his textbook that the trapezoid, lunate, and pisiform are involved in 10% with hypoplasia, fusion or delayed ossification rather than total absence; but the trapezium is missing in apparently 67% and the scaphoid in 80%. In this case, the radius, scaphoid, trapezium and thumb were absent, the lunate was also hypoplastic. As seen above hypoplasia of lunate is very rare. Tachdjian4 and Frantz et al6 reported that first metacarpal and phalanges of the thumb might be frequently absent. Silverman3 reported that the first metacarpal and its phalanges were missing in more than 80% of cases. But James et al10 and Lamb2 observed that all the affected limbs had thumb hypoplasia. In our case, the patient did not have the first metacarpal and thumb. Regarding the other fingers, Tachdjian4 reported that the radial 2 fingers, especially the index were abnormal with varying degrees of flexion contracture, weakness of active motion, and hypoplasia. The ulnar 2 digits were almost always normal and more functional. Silverman4 reported that the ulnar 4 metacarpals and phalanges were present and free of defect in the majority of cases. In the present case, the patient had 4 metacarpals. The index and middle fingers were united and immobile. The ring finger had movement only at the metacarpophalangeal joint, while the little finger had full motion. Tachdjian4 reported that ossification of the distal humeral epiphysis might be delayed. Silverman3 reported that there may be varying abnormalities of the distal humeral end. In the present case, the distal humeral epiphysis was early fused.

Congenital longitudinal radial deficiencies are frequently associated with other malformations. This is explained by the fact that many organs develop at the same time as the upper limb buds. It behooves the orthopedic surgeon to be aware of these associations and to be sure that the patient has no serious anomalies that would make surgery hazardous and inadvisable. According to Goldberg and Meyn,3,4 associated with these malformations fall into 7 groups: 1. Chromosomal abnormalities, 2. Mental deficiency, 3. Cranio-facial defect, 4. Cardiac anomalies, 5. Blood dyscrasias, 6. Vertebral anomalies and 7. Teratogenic syndromes. In our case, our patient did not have any associated anomaly. We think that this case is different from the cases reported in literature in the presence of lunate hypoplasia and the anomalies of index, middle and ring fingers.

References